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Abstract give about 20 modes from a (9x9) matrix ([1] and

[3]). However, the accurate determination of still

AM improved formulation of the singular higher-order modes requires larger characteristic

iutegral equation (SIE) technique is presented to matrices. In this paper the formulation of the SIE

determine a complete set of finline normal modes technique is extended to allow the accurate

of propagation. The present method allows the determination of any number of finline modes.

accurate determination of any number of finline

modes. The convergence for the dominant mode as

well as for the higher-order modes versus the

series truncation order is shown.

Basic formulation

Introduction

Following the standard procedure [11, one

arrives at a system of 1 inear homogeneous

equations

The determination of an accurate complete

set of finline normal modes is of great A;+2X,,&P~-1)1 As+
nro n

importance. As has already been shown in [1], the

singular integral equation (SIE) technique [2] is

very “efficient for determining such a set. Due to

the asymptotic vanishing of the coefficients of

the constructed series, the final characteristic -21 A}’ + A; + 2X0 ~ (Q1’ -1)1 Ah+
:,,, ~ Q nm r,

matrix
n

equation, which is solved for the

2X,,~Q; I Ae=O
propagation constants, possesses fast convergence ?m r,

y:

properties. So the set of finline normal modes can

be accurately determined from a relatively

small-order matrix. The already published results
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with @ = ~ylb

21}>@ ] A + ~ [COS(n$o) +f#-[(Fr+l)K~ -2, j ,, ~

10
The coefficients of A; and A: in (1) vanish

nEnXr3]R~A~ + ~ [cos(n@,n) + flY, Xfi]ReAe = O
?, n asymptotically,

n
so the infinite sun can be

truncated behind the first N terns. The system of

m = 1, 2, 3, . . . . . . . . (1) equations in (1) can then be written as a matrix

equation

where

@rJ/n = The ratio (slot width/housing bight)

[ 1-
C X.(J

and X = sin2(@,,/2)
,2

(7)

I and En are given by
The order of tbe characteristic matrix C is

n m

2N+1, its elements depend on the unknown

propagation constant ~. X is a column vector

+i containing the

.J#’ In(”r/)
cos(m+ )

unknown field expansion

I d?]
nm

(2)

-i
coefficients A3 and Ah.

f~ T, n

+i ln[2X (1-~)]

=%J’ I,,(T/)
<>

E d?]
n

-i f-’-y
i l-?j

where

To compute the elements of the

characteristic matrix, the integrals in (2)-(6)

(3)
have to be solved. The integral given by (6)

contains a singular integral so its numerical

calculation is inefficient. In [1] and [3] the

integrals have been solved for N equal to 2, 3,

(4)
and 4, what corresponds to a matrix order of 5, 7,

and 9, respectively. In this contribution,

analytical expressions have been obtained for

these integrals by direct integration and some

(5)
recurrence relations. The characteristic matrix

can consequently be determined for any order. The

elements of the characteristic matrix have been

.2
normalized such that they are real functions of (<

if the structure is lossless. The matrix equation

is solved by looking for the values of [32 which

(6)
make the matrix C singular. Each of these values

are one of the looked for modes.
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Results References

To illustrate the effect of the matrix order

on the determination of the set of finline normal

modes, the first 33 modes of a bilateral finline

fig (1) have been calculated using a matrix order

of 11, 15, 21, and 25, respectively. The values of

the normalized propagation constant $/K. are given

in table (l). The convergence for the dominant

mode and for some selected higher-order modes

versus the series truncation order N is shown in

fig. (2). From these results it is clear that the

series can be truncated behind N=12 (which

corresponds to a matrix order of 25) for

calculating the first 50 finline modes accurately.

All the reported results are for a finline with

a=2b=7.l12mm, s=.5mm, d=.254mm, and s =10.
r

Conclusions

An improved application of the SIE technique

to analyze finlines is presented. The present

method allows an accurate determination of any

number of finline modes.
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Fig. (1) The cross-section of a bilateral finline.

907



Table (i)

The propagation constants for the first 33 modes in a bilateral finline
x**x**w Ixx**x**xz *x*zxxxxx* x* E*x**xx*** z*x**xxxxx ffx*xx*K*x xxx*x*xxxx xx*xx E*x*xxxxxx xxxx Ex*z E*xxxx**Kx xxx*x II****E

matrix mode number

order 1 2 3 4 5 6 7 8 9 10 11
xxxxxxx*xx x* Kx*xxx*xxx*x x**x K**** xM*u**Ex*x ***** =Ez*x**x*x x**4****x*x*x ****u ***** *xx Mxx***Ks E**** 4** fxx***E**x*xx

11 1.70922 -jl.06042 -. I1.17464 -j2.62834 -j2.65999 -j2.73824 -j2,80291 -j3.00540 -j3.18300 -j3.92496 -j4.03684
15 1.70909 -jl.06042 -.jl.17467 -j2.621334 -j2.65999 -j2.73824 -j2.80292 -j3.00540 -j3.18303 -j3.92496 -j4.03685

21 1.70846 -jl.06042 -jl.17477 -J2.62834 -j2.66000 -j2.73824 -j2.80295 -j3.00540 -J3.18309 -j3.92496 -j4.03686
25 1.70842 -J1.06042 -,11.17477 -j2.62E!34 -j2.66000 -j2.73824 -j2.80295 -j3.00540 -j3.18309 -,13.92496 -j4.03686
sz%*zxxxxx zxxzs*xxzzx xzssxxnzxs xxzxzxsxxssa Exx Ezzxss**ssz ssssszzsss EEsBaxzxsx3z EsE*xxxzxxzz sz*s8%z EEx*sx*szs~xxxxs

12 13 14 15 16 17 18 19 20 21 22
x*x** x* Ix*x Mxxx***xx* xxx*xxx Ex*****xxxx E*x*xxx**x* *Mx***x*** *E*** ***xx *x**x*xxxx ****x ***x* *x**x***** *~**x~~~*x***#

11 -j4.25681 -j4.35126 -j5.10166 -j5.19651 -j5.53468 -j5.56120 -j5.72333 -j5.73646 -j5.74386 -j5,87134 -. J6.25523
15 -j4.25681 -j4.35128 -j5. 10165 -j5.19651 -j5.53468 -j5.56121 -j5.72333 -j5.73647 -j5.74386 -j5.87134 -j6.25522
21 -J4.25681 -j4.35130 -J5.10164 -j5.19650 -j5.53468 -J5.56121 -j5.72333 -j5.73647 -j5.74386 -j5.87131 -j6.25522
25 -j4.25681 -j4.35130 -j5.10164 -j5.19650 -j5.53468 -j5.56120 -j5.72333 -j5.73647 -j5.74386 -j5,87130 -j6.25522
***xx *x MMxxffxxxxxxx* *ff**Mx*Kx Mx*xxx Exxxxxxx*xx xx*xx*xxxx*xx Mxxxxxxxxx xwxxxxxxxx*x xxx*xxxxxxxx M**x M*Mxxx***z*xxx**

23 24 25 26 27 28 29 30 31 32 33
%#xx#x%za3 x*#a*z#a*a %Exs##**as Ez*Ex%#Ex*3 #%ss*aa#E# x%%z#xss## sEEs*ax#NE Eff E%s#sx E*##*sx%##xx%# ff##Nss#E#x %##ffx**%%#

11 -j6.30222 -j6.39508 -.j6.55319 -j7,05316 -j7.11339 -J7.21889 -j7.29699 -j7.74696 -j7,82982 -j8.03f325 -j8.11969
15 -j6.30222 -j6.39507 -j6.55318 -j7,05312 -j7.11339 -j7.21889 -j7.29697 -j7.74696 -j7,82979 -j8,03820 -j8,11967
21 -j6.30222 -j6.39506 -J6.55309 -j7.05311 -j7.11339 -j7.21889 -j7.29688 -j7.74695 -J7.82968 -J8.03817 -j8,11957
25 -j6.30222 -j6.39506 -.16.55307 -j7.05311 -j7.11338 -j7.21889 -j7.29687 -j7.74695 -j7.82966 -J8.03817 -j8.11955
x%%***zx~szzxwsx xx EExxznxxxx sxxx EBExxzxs*z zzxxsz NEsxsxxxzx z*3zzx$xxxsx xzzsxzxn RE**%xzz*x xxxxxxszs Exxazs*s*sz%xxxz
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for the dominant mode and for some selected

versus the series truncation order N.
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