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Abstract

An improved formulation of the singular
integral equation (SIE) technique is presented to
determine a complete set of finline normal modes
of propagation. The present method allows the
accurate determination of any number of finline
modes. The convergence for the dominant mode as
well as for the higher-order modes versus the

series truncation order is shown.

Introduction

The determination of an accurate complete

set of finline normal modes is of great

importance. As has already been shown in [1], the

singular integral equation (SIE) technique [2] is
very efficient for determining such a set. Due to
the asymptotic vanishing of the coefficients of
the constructed series, the final characteristic
matrix equation, which is solved for the
propagation constants, possesses fast convergence
properties. So the set of finline normal modes can
relatively

be accurately determined from a

small~order matrix. The already published results
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give about 20 modes from a {9%9) matrix

(I1]

[3]1). However, the accurate determination of still

and

higher-order modes requires larger characteristic
matrices. In this paper the formulation of the SIE
is extended to allow the

technique accurate

determination of any number of finline modes.

Basic formulation

Following the standard procedure [1],

one

arrives at a system of linear homogeneous

equations
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with ¢ = ny/b
.. & b, .
The coefficients of A~ and A in (1) vanish
s sl
asymptotically, so the infinite sum can be

truncated behind the first N terms. The system of

equations in (1) can then be written as a matrix

equation

(7)

The order of the characteristic matrix C is

2N+1, its elements depend on the unknown
propagation constant (7. E is a column vector
containing the unknown field expansion
coefficients Aj and A:.

To compute the elements of the
characteristic matrix, the integrals in (2)-(86)

have to be solved. The integral given by (6)
contains a singular integral so its numerical
calculation is inefficient. In (1] and {3] the

integrals have been solved for N equal to 2, 3,
and 4, what corresponds to a matrix order of 5, 7,

and 9, respectively. In this contribution,

analytical expressions have been obtained for
and some

these integrals by direct integration

recurrence relations. The characteristic matrix
can consequently be determined for any order. The
elements of the characteristic matrix have been
normalized such that they are real functions of ﬁz
The matrix

if the structure is lossless. equation

4
is solved by looking for the values of 3 which
make the matrix C singular. Each of these values

are one of the looked for modes.



Results

To illustrate the effect of the matrix order
on the determination of the set of finline normal
modes, the first 33 modes of a bilateral finline
fig (1) have been calculated using a matrix order
of 11, 15, 21, and 25, respectively. The values of
the normalized propagation constant ;'5‘/K0 are given
in table (1). The convergence for the dominant
mode and for some selected higher-order modes
versus the series truncation order N is shown in
fig. (2). From these results it is clear that the
series can be truncated behind N=12 (which
corresponds to a matrix order of 25) for
calculating the first 50 finline modes accurately.

All the reported results are for a finline with

a=2b=7.112mm, s=.5mm, d=.254mm, and £r=10.

Conclusions

An improved application of the SIE technique
to analyze finlines is presented. The present
method allows an accurate determination of any

number of finline modes.
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Fig. (1) The cross-section of a bilateral finline.



Table (1)
The propagation constants for the first 33 modes in a bilateral finline
1323233333333 383321133338323333323332333+32283333331213333313333%3111333:33333$13113331113333313213131223323332332333¢83232338¢3333339
matrix mode number
order 1 2 3 4 5 6 7 8 9 10 11
132233833332 32%3333333332332333133333¢2313333213¢231333%2213313¢22833:2133233333333332333:223238333332332333112333323232832333833833
11 1.70922 -31.06042 -j1.17464 -12.62834 -j2.65999 -j2.73824 -j2.80291 -33.00540 -73.18300 -j3.92496 -j4.03664
15 1.70909 -;1.06042 -j1.17467 -j2.62834 -j2.65999 -j2.73824 -j2.80292 -33.00540 -j3.18303 -j3.92436 -j4.03685
21 1.70846 -j1.06042 -31.17477 -j2.62834 -j2.66000 -32.73824 -j2.80295 -j3.00540 -j3.18309 -j3.92496 -j4.03686
25 1.70842 -31.06042 -j1.17477 -j2.62834 -j2.66000 -32.73824 -j2.80295 -j3.00540 -j3.18309 -33.92436 -j4.03666
X OO0 OO0 KGR E R0 K IO KON IO OO R R IO RO E RN XN R R KR AT
12 13 14 15 16 17 18 19 20 21 22
133333332333 333323333333333228328333333382333833323331313333332331323113833321131313311: 32133133313 231133:333333212133
11 -J4.25681 -j4.35126 -§5.10166 -§5.19651 -j5.53468 -j5.56120 -J5.72333 -§5.73646 -J5.74366 -J5.87134 -J6.25523
15 -j4.25681 -j4.35128 -j5.10165 ~j5.19651 -j5.53468 -j5.56121 -35.72333 -j5.73647 -j5.743086 -j5.87134 -j6.25522
21 -34.25681 -j4.35130 -j5.10164 -j5.19650 -j5.53468 -j5.56121 -35.72333 -j5.73647 -j5.74386 -j5.87131 -36.25522
25 -j4.25681 -j4.35130 -j5.10164 -j5.19650 -j5.53468 -j5.56120 -j5.72333 -j5.73647 -j5.74386 -j5.87130 -j6.25522
FEREXHO0OCIOOOEE00EE KOO KOO OO0 IGO0 A KRR KRN RN KRR NN NN
23 24 25 26 217 28 29 30 31 32 33
1233323323233 333333332233323332333331233333¢83331333:1133¢83:333333333333333:33133:3:3¢833333333323333333333333333333333¢833333
i1 -36.30222 -}6.39508 -j6.55319 -j7.05316 -j7.11339 -j7.21889 -37.29699 -j7.746968 -;7.82982 -j6.03825 -j8.11969
15 -j6.30222 -j6.39507 -j6.55318 -j7.05312 ~j7.11339 -j7.21889 -57.29697 -j7.74696 -§7.82979 -jB.036820 -j8.11967
21 -36.30222 -j6.39506 ~j6.55309 -j7.05311 -57.11339 -57.21889 -37.29688 -j7.74695 -;7.62968 -j8.03817 -;8.11957
25 -36.30222 -36.39506 ~j6.55307 -j7.05311 -j7.11338 -37.21889 -j7.29687 ~j7.74695 -j7.82966 -jB8.03817 -jB.11955
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Fig. (2) The convergence for the dominant mode and for some selected

higher-order modes versus the series truncation order N.
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